I gave a student seminar series on the Finite Element Method (FEM).

Time and Locations:

  • 28 May: 13:40-15:30; Room M215
  • 29 May: 13:40-15:30; Room M106
  • 30 May: 13:40-15:30; Room M231
  • 31 May: 13:40-15:30; Room M231

I used the following sources:

  • S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, 2008. https://doi.org/10.1007/978-0-387-75934-0.
  • Süli, E. (2020). Lecture Notes on Finite Element Methods for Partial Differential Equations. [Lecture notes]. Mathematical Institute, University of Oxford.

For the implementation of the Finite Element Method for ODEs, I used Python.

  • Sobolev spaces
    • Review of Lebesgue Integration Theory
    • Generalized (Weak) Derivatives
    • Sobolev Norms and Associated Spaces
    • Inclusion Relations and Sobolev’s Inequality
    • Trace Theorems
    • Negative Norms and Duality
  • Variational Formulation of Elliptic Boundary Value Problems
    • Inner-Product Spaces
    • Hilbert Spaces
    • Riesz Representation Theorem
    • Formulation of Symmetric Variational Problems
    • Formulation of Nonsymmetric Variational Problems
    • The Lax-Milgram Theorem
    • Estimates for General Finite Element Approximation
    • Higher-dimensional Examples
  • Finite Element Method for ODEs
    • Variational Formulation
    • Python Implementation
  • The Construction of a Finite Element Space
    • The Finite Element
    • Triangular Finite Elements
    • The Interpolant
    • Equivalence of Elements
    • Finite Element Method for PDEs